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Reduction of tetraethyldiphenylstannole 3 with lithium af-
forded tetraethyldilithiostannole 2, and its considerable aromatic
character was evaluated by X-ray diffraction analysis and theoret-
ical calculations. Reaction of 2 with t-butyl chloride provided
1,1¤-dilithiobistannole 4. This reaction mode is different from
that of dilithiotetraphenylstannole 1 and is of considerable
interest.

For a decade, dialkaline-metallated siloles and germoles
have received considerable attention as novel carbocyclic
aromatic compounds with a heavier group 14 element.1 The
aromatic delocalizations in these derivatives were evidenced
by NMR studies, theoretical calculations, and X-ray structural
analyses that showed no alternation of the C­C bonds within the
planar ring.2­4 The substituents (alkyl or aryl groups) of the
carbon atoms in the aromatic five-membered rings have little
effect on degree of aromaticity of these dialkaline-metallated
metalloles as well as their reactivities.2,3 In the course of our
studies on the synthesis of tin-containing aromatic compounds,
we have already reported the synthesis and structure of
dilithiotetraphenylstannole 1 (Chart 1).5 Based on its molecular
structure and theoretical calculations, compound 1 is concluded
to be the first tin-containing carbocyclic aromatic compound.5b,6

Reactions of 1 with alkyl, aryl, or metallyl halides gave the
corresponding lithiotetraphenylstannoles.7 In contrast, there
have been no reports on the structure and reactivity of a
dilithiostannole with alkyl substituents on the carbon atoms of
the five-membered ring. We report herein the synthesis and
structure of tetraethyldilithiostannole 2 and its unique reactivity,
which is different from that of 1.

The tetraethyldilithiostannole 2 was obtained by the reduc-
tion of 1,1-diphenylstannole 38 with lithium through reductive
cleavage of the Sn­Ph bonds, as in the synthesis of the dilithio-
tetraphenylstannole 1 (Scheme 1).5b,9 Reduction of 1,1-diphen-
ylstannole 3 with lithium proceeded cleanly to afford phenyl-
lithium and a new compound which had a stannole skeleton, as
evidenced by NMR spectroscopy. After heating the reaction
mixture at 80 °C for 22 h, phenyllithium completely decomposed
and 2 was obtained as black-yellow crystals in 57% yield.

The molecular structure of 2 was established by X-ray
diffraction analysis. The ORTEP drawing of 2 is shown in
Figure 1.9 One lithium atom is coordinated by an ether molecule
and the stannole ring in an ©5-fashion, whereas the other lithium
atom is coordinated by the stannole ring in an ©5-fashion and a
tin atom of another dilithiostannole molecule in an ©1-fashion
with the intermolecular distance between the tin and the lithium
atoms of 2.748(5)¡, making a polymeric chain in the solid state
(Figure 1), whereas such interactions were not found in 1.5b The
stannole ring is planar with the sum of the internal angles of
539.9°. The C­C bonds of the starting 3 differ (1.346(4),
1.510(4), and 1.344(4)¡), indicating 1,3-diene character.9 In
contrast, the C­C distances within the ring are almost equal
(1.404(4), 1.455(4), and 1.404(5)¡), as was observed in the
aromatic dilithiotetraphenylstannole 1, suggesting that the
tetraethyldilithiostannole 2 has also considerable aromatic
character.

In the 7LiNMR of 2 in THF­C6D6 at room temperature,
only one sharp signal was observed at ¹5.2 ppm, in the region
similar to that of 1 (¹4.4 ppm),5b suggesting that 2 has
considerable aromatic character and exists as a monomer with
two solvated lithium atoms on the stannole ring in solution.

To aid in understanding the structure of 2, theoretical
calculations were performed.10 The optimized structure of
unsolvated 2 is also planar and the calculated C­C distances
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Chart 1. Dilithiostannoles, 1 and 2.
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Scheme 1. Synthesis of tetraethyldilithiostannole 2.
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Figure 1. ORTEP drawings of tetraethyldilithiostannole 2 with
thermal ellipsoids plots drawn at 40% probability for non-hydrogen
atoms. Selected bond lengths (¡): Sn­Li1, 2.657(5); Sn­Li2, 2.741(6).
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within the ring of 2 are nearly equal (1.435 and 1.469¡), which
is consistent with the X-ray measured values. The considerably
negative NICS(1)11 values of a free stannole dianion were
calculated to be ¹6.89 and ¹7.24 ppm, suggesting that the
dilithiostannole 2 is also aromatic, as are other group 14
dilithiometalloles.1c,5

Next, reactivity of 2 was investigated. Reaction of 1 with
t-butyl chloride gave the corresponding lithiostannole with a
t-butyl group on the tin atom.7a Reaction of 2 with t-butyl
chloride provided the sole product having a stannole skeleton, as
evidenced by NMR spectroscopy (Scheme 2).9 Recrystallization
of the reaction product afforded 1,1¤-dilithiobistannole 4, instead
of the corresponding t-butyl-substituted lithiostannole, in
93% yield, the structure of which was determined by X-ray
diffraction analysis (Figure 2). The electron transfer from 2
to t-butyl chloride would occur to provide anion radical 5,
which would react not with the resulting t-butyl radical but
with another anion radical 5, leading to the formation of 4
(Scheme S1, see Supporting Information). Alternatively, halo-
philic reaction of 2 toward t-butyl chloride would occur to give
chlorolithiostannole 6, which would react with 2 to afford 4.

The X-ray diffraction analysis of 4 revealed that the two
stannole rings are oriented in an anti fashion through the tin­tin
bond (Figure 2).9 Each lithium atom is coordinated by an ether
molecule and the stannole rings in ©6-fashions. The Sn­Sn
distance is 2.9652(3)¡, which is slightly longer than those of
1,2-dilithiotetraphenyldistannane (2.905(3)¡)12 and dilithium
salt of bistannole 1,1¤-dianion 7 (2.9059(5)¡) (Chart 2).13 In
contrast to 7 having the planar stannole rings, the stannole rings
of 4 slightly deviate from planarity and angle between the C1­
C2­C3­C4 and C1­Sn­C4 planes is 14°. As found for 7, there is
remarkable alternation of the C­C bonds in the stannole rings,
suggesting that the stannole rings of 4 have considerable 1,3-
diene character.

In summary, tetraethyldilithiostannole 2 has also consider-
able aromatic character, as observed in dilithiotetraphenylstan-

nole 1. However, the reactivity of 2 toward t-butyl chloride is
different from that of 1. This difference probably arises from
different steric enviroment around the tin atoms.14
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Scheme 2. Formation of 1,1¤-dilithiobistannole 4 from 2.
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Figure 2. ORTEP drawings of 1,1¤-dilithiobistannole 4 with thermal
ellipsoids plots drawn at 40% probability for non-hydrogen atoms.
Selected bond lengths (¡): Sn­Li, 2.879(4); Sn#­Li, 2.907(4); C1­C2,
1.367(4); C2­C3, 1.486(4); C3­C4, 1.370(3).
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Chart 2. 1,1¤-Dilithiooctaphenylbistannole 7.

701

© 2010 The Chemical Society of JapanChem. Lett. 2010, 39, 700­701 www.csj.jp/journals/chem-lett/

http://dx.doi.org/10.1021/cr00099a009
http://dx.doi.org/10.1016/j.ccr.2004.08.004
http://dx.doi.org/10.1016/j.ccr.2004.08.004
http://dx.doi.org/10.1021/om00021a005
http://dx.doi.org/10.1021/om00021a005
http://dx.doi.org/10.1016/0022-328X(95)00333-L
http://dx.doi.org/10.1016/0022-328X(95)00333-L
http://dx.doi.org/10.1021/ja00151a038
http://dx.doi.org/10.1021/ja00151a038
http://dx.doi.org/10.1002/anie.199608821
http://dx.doi.org/10.1021/ja962103g
http://dx.doi.org/10.1021/ja962103g
http://dx.doi.org/10.1002/anie.199610021
http://dx.doi.org/10.1002/anie.199610021
http://dx.doi.org/10.1021/om990241j
http://dx.doi.org/10.1021/om9503306
http://dx.doi.org/10.1021/om9503306
http://dx.doi.org/10.1021/om960994v
http://dx.doi.org/10.1021/om960994v
http://dx.doi.org/10.1039/b200238h
http://dx.doi.org/10.1002/anie.200501632
http://dx.doi.org/10.1002/anie.200501632
http://dx.doi.org/10.1021/ja057531d
http://dx.doi.org/10.1246/cl.2003.912
http://dx.doi.org/10.1002/ejic.200600629
http://dx.doi.org/10.1016/S0040-4039(98)00430-4
http://dx.doi.org/10.1021/ja960582d
http://dx.doi.org/10.1021/ol016217v
http://dx.doi.org/10.1002/zaac.19976231006
http://dx.doi.org/10.1002/zaac.19976231006
http://dx.doi.org/10.1021/ja057228c
http://dx.doi.org/10.1021/ja057228c
http://www.csj.jp/journals/chem-lett/

